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Abstract

Treatment of convective and pressure fluxes in the Euler and Navier—Stokes equations using
splitting formulas for convective velocity and pressure is investigated. Two schemes — Controlled
Variation Scheme (CVS) and Advection Upstream Splitting Method (AUSM) — are explored for
their accuracy in resolving sharp gradients in flows involving moving or reflecting shock waves as
well as a one—dimensional combusting flow with a strong heat release source term. For
two—dimensional compressible flow computations, these two schemes are implemented in one of
the pressure-based algorithms, whose very basis is the separate treatment of convective and pressure
fluxes. For the convective fluxes in the momentum equations as well as the estimation of mass fluxes
in the pressure correction equation (which is derived from the momentum and continuity equations)
of the present algorithm, both first- and second order (with minmod limiter) flux estimations are
employed. Some issues resulting from the conventional use in pressure-based methods of a
staggered grid, for the location of velocity components and pressure, are also addressed. Using the
second—order fluxes, both CVS and AUSM type schemes exhibit sharp resolution. Overall, the
combination of upwinding and splitting for the convective and pressure fluxes separately exhibits
robust performance for a variety of flows and is particularly amenable for adoption in
pressure-based methods.

1. Introduction

For the hyperbolic system of Euler equations, a number of high resolution schemes have
been proposed to date. Most of these schemes are designed to satisfy the TVD property for scalar
conservation laws and systems of equations with constant coefficients, whereby spurious
oscillations are suppressed. Several different approaches can be found in literature such as the
modified flux approach (scalar diffusion) of Harten [1], flux vector splittings [2, 3], flux difference
splittings [4, 51, etc. All these schemes developed for the Euler equations can be directly extended to
the Navier—Stokes equations.



The main motivation behind the various approaches is to achieve high accuracy and
efficiency in numerical computations, especially for complex flows that may involve strong
convective effects, sharp gradients, recirculation, chemical reactions and / or turbulence models.
Different schemes have different accuracy and efficiency characteristics. For example, flux vector
splitting schemes are quite efficient and relatively simple, but produce excessive smearing.
Moreover, the Steger—Warming splitting [2] produces glitches at points where eigenvalues change
sign, such as sonic points. Van Leer splitting [3] is designed to remedy this, but it suffers from
excessive numerical diffusion in viscous regions. Subsequent efforts have been made to reduce this
diffusion (Hinel & Schwane [6]). On the other hand, flux difference splittings such as Roe and Osher
splittings, have substantially lesser numerical diffusion. However, they too are known to yield
inaccurate results in some simple flows. For example, Roe splitting produces non—physical
“carbuncle” shocks in supersonic flows over blunt bodies [7].

Taking all the above factors into account, there is continued interest and ongoing effort in the
development of new schemes which are robust in terms of accuracy as well as efficiency. Towards
this end, one promising approach that is currently under investigation is the treatment of convective
and pressure fluxes as two separate entities. Employing this idea, Thakur and Shyy [8-11] have
developed a Controlled Variation Scheme (CVS) in which the convective flux is estimated using
Harten’s second—order TVD scheme (modified flux approach) where the local characteristic speeds
of the different equations are coordinated by assigning them the values of the local convective
speeds; the pressure terms are treated as source terms and are central differenced or treated in a
special manner by employing Strang’s time—splitting technique. Liou and Steffen [7] have also
proposed a scheme, called the Advection Upstream Splitting Method (AUSM) which treats the
convective terms and the pressure terms separately. In the AUSM scheme, the interface convective
velocity is obtained by an appropriate splitting and the convected variable is upwinded based on the
sign of the interface convective velocity. The pressure terms are also handled using an appropriate
splitting formula. For both the CVS and AUSM schemes, the operation count is substantially smaller
compared to Roe and Osher schemes since both CVS and AUSM do not entail the evaluation of
‘either Jacobian matrices or intermediate states.

In the controlled variation scheme (CVS) presented here, guided by the eigenvalues of the
total flux as well as the individual convective and pressure fluxes, the treatment is as follows. The
convective flux is fully upwinded whereas the pressure flux is split yielding contributions from
upstream and downstream neighbors. Two different formulations which lead to different pressure
fluxes, are investigated. The eigenvalues of the respective pressure fluxes are used to interpret the
physical significance of the two formulations. It is shown that the formulation which is consistent
with the physical mechanism that the convective fluxes get transported at the mean convection speed
and the pressure signals propagate both upstream and downstream in subsonic flows, is perhaps the
more desirable one. Two one—dimensional test cases — the standard shock tube problem and a
longitudinal combustion instability problem previously investigated by Shyy et al. [12] — are used
to demonstrate that the CVS and the AUSM scheme yield accuracy comparable to the Roe scheme.
The results for the combustion instability problem, in particular, illustrate that the approach of



treating convective and pressure fluxes separately can indeed coordinate signal propagation even in
the presence of source terms such as heat release.

As far as the solution of the multi-dimensional Navier—Stokes equations is concerned, two
broad categories of algorithms are in common use, namely the density-based and pressure-based
algorithms. The attention of the present work is on the pressure-based methods. These types of
algorithms, though originally developed for incompressible flows [13], can be easily extended for
compressible flows [14]. The pressure-based algorithms treat the convective and pressure fluxes as
two separate entities. However, to date, no theoretical foundation has been laid for incorporating the
modern shock capturing schemes into these pressure-based algorithms for compressible flows. In
the present work, the controlled variation scheme (CVS) developed earlier in the context of
pressure-based methods for incompressible flows [10,11] is extended for compressible flows. The
present work investigates the applicability of the recent pressure splitting formulas proposed by Liou
& Steffen [7] in the context of their AUSM scheme into the pressure-based methods. It is
demonstrated that via the CVS and AUSM type schemes, the pressure—based algorithms can indeed
yield accurate simulations of complex compressible flows including high resolution of shock waves.

2. Estimation of Fluxes for the CVS and AUSM Schemes

The one—dimensional system of conservation laws for an ideal gas is the following:

oW |, oF _
ot Tax=0 (1a)
4 e ou
where W=\im F = mu + p = |mu + P (lb)
E (E + p)u Hu

Here, E is the total energy, E = o(e + u%/2), and H=E+p is the total enthalpy. A numerical scheme for
Eq. (1a) can be written as, for example

wrtl 4 AG(F?:ll/z - F7_+1]/2) = Wi -0 Fl,—Fl5 @

where A=AVAX, F, , , /2 are the numerical fluxes at the control volume interfaces, the superscripts n

and n+1 represent time levels and 0 is a measure of implicitness of the scheme. We obtain explicit,
fully implicit and Crank-Nicolson schemes for 8 =0, 1 and 1/2, respectively.

A recent approach is to treat convection and acoustic wave propagation as physically distinct
(but coupled) mechanisms. The breakup of the total flux into convective and pressure fluxes can be
done in at least two different ways as presented next.

(a) Formulation 1: Based on Total Enthalpy

One way of breaking up the total flux into convective and pressure fluxes is to treat the total
energy flux (Hu) as part of the convective flux. Thus, the pressure flux consists of just the p term in
the momentum flux:



ou 0
= ¢ P =
F=F+F Zz + g (3a)

ea 0
Mo + FP = M| Q42| 4 |P
oHa 0 (3b)
Such a breakup of the total flux has been used, for example, in the AUSM scheme of Liou and Steffen
[7].

I

(b) Formulatioh 2: Based on Total Energy

Another way of breaking up the total flux into convective and pressure fluxes is to treat the
energy flux (Eu) as part of the convective flux. Thus, the pressure flux now consists of pand pu

terms:
ou} (0
F=F+Fr=|muj+|P
Eu pu 4)

We first present the treatment of the convective flux for either of the above two formulations.

2.1 Convective Fluxes

2.1.1 Controlled Variation Scheme (CVS)

As developed previously, the CVS utilizes the form of TVD type schemes — originally
defined by Harten [1] — while defining the characteristic speeds in a different way [10]. The
numerical convective flux Fl? +1/2 using a first—order TVD scheme [1] can be written as:

1
vz = 5{ Fi+Fi  — Q(bi+l/2) Ai+1/2W} (5)
where Q is the convective dissipation function given by

-1-(93+5) C ifl<é

Qi1 = Qbiv1p2) = 2\0
Y -('+/) bl if 1b] = 0

and Aig1pW = Wiy — W, (6b)

(6a)

The parameter 0 in Eq. (6) is used to eliminate the violation of the entropy condition for
characteristic speeds close to zero [1] and b, /2 is the local characteristic speed on the right

interface of the control volume.
Let w represent the dependent variable of each of the scalar conservation laws comprising

the system (1) and let f represent the respective convective flux:

fivip = %[ Jit i1 — Q(bi+1/2) Ai+1/2w} (7)



The local characteristic speed b, , /2 is defined as follows:

%"-‘—"—ﬂ if 4, W # 0
_ i+1/2%

bivipp = of (82)
and dig1pg¥ = Wier — Wi (8b)

In the present work, we employ the explicit scheme (0 = 0) for one—dimensional unsteady
flow problems and the fully implicit scheme (i.e., € = 1) for multi-dimensional steady flow cases
as the basis for development of the controlled variation scheme (CVS). For the latter, the implicit
and highly nonlinear equations would require iterations at every timestep if a time-stepping
approach to steady state is employed. If an infinite timestep is chosen to solve for steady state, as
in the present study, the number of iterations required to achieve convergence will be very large.
Consequently, some linearized versions of implicit TVD schemes have been devised [15-17]. We
base our scheme on the linearized non—conservative implicit (LNI) scheme described by Yee
[15,16], following which fi+1/2 - fi_1/2 can be written as

n+l

fimi v i — Q(bi+1/2)Ai+l/2w

n+1
[fm/z'fi—l/z] - —fi —fi-1 * Q(bi—1/2)‘1i—1/2w

1 ntl n+l 1 n+l n+l
= i[bi+l/2 - Qi+1/2] (wi+1 - W,-) - 5[_ b,‘-]/z - Qi—1/2] (W,' - W,'_l) 9

The superscripts n and n+] signify the previous and current iteration levels at steady state,
respectively. The above nonlinear equation can be linearized by dropping the superscripts of the

coefficientsof 4, , /zw’l+1 from n+1 to n. This form can be shown to be TVD [16]. This form of

the implicit scheme cannot be expressed in conservation form and thus it is non—conservative except
at steady state where it has been shown that it does reduce to a conservative form [16].
In the CVS, the local characteristic speed b, , /2 for the system (1) is defined as the local

convective speed:
1
by = lw + wy) (10)

Also, in the CVS, the parameter J is used to regulate the amount of numerical dissipation in the
scheme.

2.1.2 The AUSM Scheme

We now briefly present the treatment of convective flux in the AUSM scheme proposed by
Liou and Steffen [7] which also treats the convective terms and pressure terms separately. The



numerical convective flux, for the AUSM scheme, at an interface is written as:

Fic+l/2 = Mi+l/2(¢i+1/2)L/R ' (11)
where M, , /2 is the interface convective velocity and @ is the convected variable.

The interface convective Mach number is expressed as the sum of the split values of the

positive and negative contributions from the left and right states of the interface:
+ —_

My = (Mi+1/2)L + (Mi+1/2)R (12)

For first—order accuracy, the left (L) and the right (R) states on the (i+1/2) interface are obtained by a
first—order extrapolation of the nodal values of the left and the right neighbors of the interface:

+ -—
(M), =M (Mis1), = M1 (13)
The spitting chosen here (based on the van Leer splitting for the Euler equations) is the following:
£ (M £ 1 if 1M < 1,
M* =4 (14)
3 (M = M), otherwise

The convected variable is upwinded, depending on the sign of the interface velocity, as
follows:

( ) (¢i+1/2)L’ if Miyypp 20, s)
P, =
i+1/2 L/R (¢i +1 /Z)R’ otherwise

For first—order accuracy, a first—order extrapolation using one upwind nodal value is employed:

(¢i+1/2)L =% (¢i+1/2)R = Pisy (16)

2.1.3 Formulation of the Fluxes of the CVS and AUSM Schemes

Wada and Liou [18] have proposed a version of the AUSM scheme based on flux difference
splitting, labelled as AUSMD. It is interesting to note that the estimation of the convective fluxes
in the momentum equations by the AUSMD scheme is identical to that of the linearized CVS scheme
for steady state computations, except the interface convective velocities are estimated differently
in the two schemes. The net convective flux along the x—direction, for example, using the CVS
scheme, Eq, (9), with d =0, can be expressed as follows:

cvs
[(9“2),-+1/2 - (9“2)1'—1/2] = %Qi+l/2(ui+1/2 - |“.-+1/2l) (w1 — )

ui—l/ZI) ) ("i - “i-x)

1
- §9i—1/2(_ Ui~

“i-;/z‘) 7(“71' ‘7“i—71)'
17

1 1
= '2'95+1/2(“i+1/2 - ‘“i+1/2l) (“i+1 - “i) - 5_‘91'-1/2(’ 12—



In the AUSMD scheme, the convective flux is expressed as follows:
AUSMD | .

2 2
[(9" ),-+1/2 — (ou )i—1/2] 5[(9”)i+1/2(“i +uiy) - |(9")i+1/2l (141 = “i)]

- %[(9”),--1/2(“,'_1 + u,’) - I(Qu)i—l/Zl (“i - ui—l)]

= %Qi+1/2(ui+1/2 - I“i+l/2’) (”i+1 - “i) - %Qi—l/Z(_ Ui—12 = “i-1/zl) (“i - ”i—1)

+u (9i+1/2”z+1/2 - 9i—1/2"i—1/2) (18)

From Egs. (17) and (18), it can be seen that
AUSMD cvs
[(Quz)i+l/2 - (Quz)i-l/Z] = [(9“2).-+1/2 - (Q”Z)i—l/z]

tu (Qi+l/2ui+1/2 - 9i—1/2"i—1/2) (19)

The last term in the above expression is nothing but the nodal value of the dependent variable
multiplied by the net mass flux in the x—direction. A similar expression results from the convective
fluxes along the y—direction. Thus the difference between the numerical convective fluxes between
the CVS and the AUSMD schemes is the net mass flux term integrated over a control volume, which
must be zero at steady state (from the continuity equation). Thus, for steady state applications, the
two flux estimations are identical. The only difference is the method of estimation of the interfacial
velocities — the CVS scheme just averages the nodal point values (Eq. 10) whereas the AUSMD
scheme uses splitting based on the local Mach number (Eq. 12).

2.2. Treatment of Pressure Flux

As mentioned earlier, the pressure flux is treated separately in both CVS and AUSM type
schemes. Different approaches can be taken as described next.

2.2.1 Splitting of the p term

The p term in the momentum equation for both the formulations given by Egs. (3) and (4) can

be treated by splitting as follows:
+

F€+1/2 =Pi+172 T (Pi+1/2)L + (Pi+1/2); (20)

For first—order accuracy, the left (L) and the right (R) states on the (i+1/2) interface are obtained by a
first—order extrapolation of the nodal p values of, respectively, the left and the right neighbors of the
interface (Fig. 1).

The splitting of pressure can be achieved in a manner similar to the van Leer splitting for the
fluxes of the Euler equations [3]. The van Leer splitting is based on the requirements that the split
fluxes as well as their first—derivatives be continuous and that the split fluxes be polynomials of the



Jowest possible degree. This leads to a splitting of the fluxes in terms of factors (M + 1)2. Liou et
al. [19] have suggested a similar splitting for pressure:

p=a|M+ 1> = (M - 1+ B[ + 1 + M ~ 17?] 1)
= daM + 28(M? + 1)
By choosing 28=p (which is true for M=0), we obtain

a=-Lipm (22)
and hence p can be written as
p=bM+ D= M+ 2+ F00+ 1200+ 2) (23)

Thus, as suggested by Liou and Steffen [7] and Liou et al. [19], the following splitting is employed:

‘%(M £+ DXQ F M), ifiMi<1,
pt =43 (24)
E(M + IM)/M, otherwise

Thus, for supersonic flow, the above formulation leads to full upwinding of pressure, namely,
Piv1/2 = Pi > if M >1and M >0 (25)

The splitting takes place only for subsonic flow where contributions from both upwind and
downwind neighbors are taken into account:

+ .
Pivi2 = (b)) + (P,-+1) ) if Ml <1

) 2
(M; +1)2-M)p; + %(Mi+1 = 1)(2 + Miyy) Pisy (26)

N

This is consistent with the fact that pressure signal propagates only in the upwind direction for
supersonic flows and in both upwind and downwind directions for subsonic flows. The pressure flux
at the interface can also be interpreted as the following:

=1 1
Piviz = §(pi+Pi+1)—§Qf+l/zA,~+1/2P (27a)
. _1 a2
with Q€+1/2 - EMi+1/2(3 Mi+l/2) (27p)
where Q‘;’_l_ 12 is the numerical diffusion introduced by the pressure splitting to the central difference

flux and M i+1/2 is the interface Mach number. It can be observed that as M i+1/2 increases from 0 to

1, Q§’+ . /2varies from O to 1 smoothly, changing the nature of the pressure splitting from central

differencing (for M, , = 0) to full upwinding (for M, n= 1) in a continuous manner.



Eigenvalues

We next present a brief analysis of the eigenvalues associated with the convective and
pressure fluxes. It must be stated at the outset that one has to examine the eigenvalues of the total
combined flux (convective and pressure) in order to interpret the true nature of signal propagation in
the gas dynamic system. However, the following analysis gives an idea of the nature of the
convective and pressure fluxes in the two formulations given by Eqgs. (3) and (4). In particular, from
the viewpoint of operator splitting, the following analysis will be relevant to the individual
components of convective and pressure fluxes, respectively. Also, this breakup of the total flux is
expected to be more critical for the CVS since in this scheme, the coupling between the convective
and pressure fluxes is not explicitly coordinated as a function of the local Mach number, as in the
AUSM scheme. For the convective and pressure fluxes given by Eq. (3), the Jacobians of the
convective and pressure fluxes are given by the following

0 1 0
2
ac =2 u 2u 0 (28a)
—Eu 4+ o - i yE-3@w -2 yu
0 e 2
0 0 0
2
AP = %F‘% = |ty — l)% —y-Du -1 (28b)
0 0 0

where y is the ratio of specific heats of the gas. The eigenvalues of the above Jacobians can be found
by solving the equations
A —A°T =0 AP - AP T =0 (29)

where I is the identity matrix, resulting in the following eigenvalues for the convective and pressure
fluxes:

0 0
A¢ = [)2/2] AP =~ (VO- Du (30)

which seem to indicate that the convective flux has an upwind character and that the pressure flux has
a downwind character only. In accordance with the physical characteristics, it is desirable that the
convective fluxes are completely upwinded and pressure fluxes are split based on the local Mach
number. It is this thought which prompts us to investigate Formulation 2 (Eq. 4) which is perhaps
more consistent with the numerical treatment of the individual (convective and pressure) fluxes.
If the three equations — continuity, momentum and energy — are looked upon as a
collection of three scalar conservation laws, as in the case of sequential solvers [8,9], then the
characteristic speeds that one obtains for the convective terms in the three equations are

(u, u, yu ). Likewise, for the pressure terms in the three equations, the characteristic speeds are
(0,—(y — Du, 0).



2.2.2 Splitting of the pu term

For formulation 2, given by Eq. (4), the pressure flux has the pu term in the energy equation,
which can also be split in a manner similar to the p term in the momentum equation. As suggested by

Liou et al. [19], the pu term can be expressed as consisting of (M 1)2 factors occurring in the
splitting for p and a quadratic function in u:

oa

pu = %".(M + D}Au? + 2Bua + Ca?) - T (M~ 1)}(Au? — 2Bua + Ca?)

= (A + B)ou® + (B + C)oua?

(31)
The ou’ term can be eliminated by enforcing the condition
A+B=0 (32a)
to obtain
__P
B+ C= ? (32b)
Thus, a family of infinite choices for splitting pu are possible based on the parameter B. From the
consideration of the total energy flux in the Euler equations, van Leer has proposed the following
choice of B:
h/a?
B=——- 33
1 + 2h/a? (33
where 2 = H/p. The simplest choice, as proposed by Hinel ez al. [20] is
B=0

(34)
Thus, as suggested by Liou ez al. [19], in the present study, the following splitting is employed:

+ %Qa(M + 1)%(Au? £ 2Bua + Ca?), if M1 < 1,
%“(M + IMI)/M,

pu* =

(35)
otherwise
Eigenvalues

For the convective and pressure fluxes given by Eq. (4), the Jacobians of the convective and
pressure fluxes are given by the following

0 1 0
= 9F¢ —u? 2u 0
A =" = 36a)
oW —-E-u E 4 (
e e
[ 0 0 0
v - DL —@-1 )
ar = - ) v Y (36b)
o-n(-Bu+w) o-nE-30) oD
The eigenvalues of the above Jacobians are:

10




4 O R
0] + y_lc

2u AP 4

_ fr=1,
L Y y
which indicate that the convective flux has an upwind character and that the pressure flux has both a
downwind and an upwind character. The eigenvalues of the pressure flux in this formulation also
suggest that the speed of propagation of pressure signals is dependent on the acoustic speed. Thus, it
appears that Formulation 2 is more consistent with the dynamics of the system if one treats
convection and acoustic wave propagation as two separate entities. Once again, it must be stated that
Formulations 1 and 2 are expected to make more difference for the CVS than the AUSM scheme due
to the reasons stated earlier.

If the three equations in the Euler system (continuity, momentum and energy equations) are
looked upon as a collection of three scalar conservation laws, then the characteristic speeds that one
obtains for the convective terms in the three equations are ( u, u, u ). Likewise, for the pressure
terms in the three equations, the characteristic speeds are (0,—@y = Du, (y — Du )-

(37)

2.3 Roe Scheme

In the present paper, the performance of the CVS and AUSM schemes is compared with that
of the Roe scheme (which treats the convective and pressure fluxes as one combined flux and is
considered as the most accurate of the approximate Riemann solvers) for some one-dimensional test
cases. We briefly present the fluxes of the Roe scheme to contrast those of the CVS and AUSM. The
Roe scheme [4, 21] is based on a characteristic decomposition of flux differences:

Fion—Fi= A=(W'+1/2) (Wisr — W) (38)

where ,T(Wi +1 /2) is the linearizéd Roe—averaged matrix . The numerical flux of the Roe scheme at

an interface for each of the three equations is given by

3
_1 1 T 5
fi+1/2 - §(fi +fi+1) - 52' }‘j‘ Ai+1/2w(’) R; (39)
j=1
where 1 and R are respectively the eigenvalues and eigenvectors of jWi +1 /2):
Zi=u-c I,=1u ILi=u+c (40a)
1
- 1 = = b
Ro=2|i-c Ry=| -2 Ry=2a|u+c (40D)
2 |H-uc S 2 \F+uc

Here the 4, /2w’s are the characteristic variables which represent the magnitudes of the waves at

the interfaces and are given by:

11



Aw® = 22 _ 4 (41a)

oc
4
Aw® = A9 - £ (41b)
c
aw® = 22 4 gy (410)
ec

where du = 4, ;4 = U4y — u;, etc. All the variables are weighted by the ratio of the square

Rivip= \/9i+1/9i (42a)

root of densities:

Uivi2 = Riy12 Qi (42b)
7i+1/2 = Rl;tflu:.ll_j o (42c)
17,'4—1/2 = RHRli/i}:I/i;li o (42d)
Z-:i+1/2 =@ - 1)(’;'-7.41/2 - %;2) (42e¢)

2.4 Numerical Dissipation of the Various Schemes

The net interfacial flux for each of the schemes discussed in the previous sections can be
expressed as follows:

n
Cvs: Fii 12 =21 F{+Fi ,— Qi+1/2Ai+l/2W] +P (43a)
0
AUSM: Fipip= §_Mi+1/2( D+ Pryy) - lMi+1/Zl Ai+1/2¢] +Piip (43b)
_ 1- =
Roe: Fivrvp=3| Fi+Fiy - lAi+1/2lAi+1/2W] (43¢c)

In all of the above schemes, the last term in the square brackets represents the numerical dissipation
added to the central difference scheme. A significant contrast among the above schemes is that the

Roe scheme involves the computation of the linearized matrix X(Wi +1 /2), unlike both CVS and

AUSM schemes. In the AUSM scheme, the coupling between the numerical convective and pressure
fluxes via the splitting formulas for both velocity and pressure at the control volume interfaces is
expected to coordinate signal propagation, thus yielding no spurious oscillations. In the CVS, too,
there is such a coupling but perhaps to a lesser degree since interfacial velocity is directly estimated
by two—point averaging. However, the parameter 6 in the CVS serves to regulate the amount of
numerical dissipation in order to suppress spurious oscillations should they occur.

12



3. Extension to Second-Order Spatial Accuracy

The net flux for each of the schemes discussed in the previous sections is spatially first—order
accurate. One can extend the net flux formally to second—order accuracy by employing a variable
extrapolation or a flux extrapolation approach. The latter is chosen here.

Let the total first-order flux at an interface be givenby f; , /2 where the various quantities at

the interfaces are defined by first—order extrapolations. We define f; = f(u,) as point—valued fluxes

at cell centers.
A general expression for a higher—order flux at the interface can be written as [22]:

R A | e T R R

+ %[1 ; x(fi _fi+l/2) + l";_%(fiﬂ _~fz‘+3/2)] (44)

For » = 1, we obtain the second—order central difference scheme whereas ® = —1 yields the fully
upwind second—order scheme. Choosing % = -1, the second—order interface flux becomes:

2
f,(+)1/2 fivipt 5 [( i f,—l/z) + (fi+1 “fi+3/2)] (45)
which can be expressed with the use of limiters (for suppression of oscillations), as follows:

oo+ S W) i) = ¥o) (i) 49

where

o+ =fi+2 _fi+3/2 - =fi—1 _fi—1/2
12 fi "fi+1/2 172 fi—fi+1/2
The function ¥(r)is the flux limiter mentioned above. The minmod flux limiter has been employed

in the present study, namely:
Minmod limiter Y(r) = max[0, min(1, )] (48)

(47)

Other limiters such as van Leer’s monotonic limiter or Roe’s superbee limiter can also be used.
For the implicit version of the CVS, the second—order interfacial flux can be written as

follows:
1
,2+)1/2 fisip Z‘/’('ituz) ' {i_fi—l + Qi—l/ZAi—1/2w}

1 [ —
- ‘¢(’i+3/2) . {fi+2 ~fiv1 Qi+3/2Ai+3/2w] (49)
which can be further simplified, using Eq. (Sa) as follows:

ff+1/2 fiv12 Z‘/’("i—l/z) ' [ i-12 T Qi-—l/Z} - (w; - ;"}i_l)

+ %w(’i—ﬂﬂ) ) {_ bivap + Qi+3/2] (Wirz = wisy) (50

Similarly, ffz_)l /p can be written as
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ffz_)l/z =fi-int %1/’(';’_3/2) ' {bi-—3/2 + Qi—3/2] (Wio1 = wisg)

1 -
+Z¢(ri+1/2) ) {_ bivipt Qi+1/2} (Wiry — W) (51)
Finally, from Egs. (7), (50) and (51), we get the following net flux for the linearized implicit
version of the CVS

-/ = L
f(+1/2 f§—1/2 2

i

_ " n+1
biyi2 — 1+1/2] [1 + %'/)("i+1/2)]} (WH-I - Wi)

|
(R w ool e

_1_
2
+ %{'/’ ¢+3/2 + Q;+3/2] (Wi+2 - Wi+1)}
%{U) by 3t Qi 3/2] (Wit — Wi—Z)] (52)

4. Results of One—-Dimensional Test Cases

Two one—dimensional cases are investigated in the present study. The first one is the standard
shock tube problem. The second problem involves the simulation of a longitudinal combustion
instability which involves thermoacoustic coupling due to the interplay between pressure
oscillations and periodic heat release in the combustor.

4.1 Shock Tube Problem

The shock tube problem presented here has been previously investigated in Thakur & Shyy
[8,9]. The initial conditions on the left and the right of the diaphragm are reported there. In the
present work, we study the CVS and AUSM schemes in terms of their capacity to resolve
discontinuities such as shock waves and contact surfaces. The total length of the tube is 14 units with
the initial location of the diaphragm in the middle of the tube. 141 grid points are used and the value
of A= At/Ax is 0.1. Results are presented in the form of total energy profiles after 200 time steps. For
all the results presented in the following, the fluxes of all the schemes employed have been
extrapolated to second—order using the minmod limiter.

Figures 2 and 3 show the total energy profiles obtained with Formulations 1 and 2,
respectively (as classified in Section 2), of the CVS, using two values of the parameter 0 which
regulates the amount of numerical dissipation. It can be observed that Formulation 1, which treats
only the p term as part of the pressure flux, yields aslight overshoot near the shock location, as seen in
Fig. 2(a). For both the values of é, Formulation 2 yields solution profiles which are qualitatively
better than those obtained with Formulation 1, consistent with the interpretation of the eigenvalues
of the Jacobian matrices for the two formulations, discussed in Section 2. Comparing these profiles
with those obtained using the second—order Roe scheme, shown in Fig. 7, it can be observed that the
CVS, especially with Formulation 2, yields accuracy comparable to the Roe scheme.
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The solution profiles obtained with the second—order AUSM scheme are shown in Fig. 4.
Again, both formulations for the convective and pressure fluxes are investigated. It is seen that the
AUSM scheme yields results with Formulation 1 which are comparable with those obtained with
Formulation 2. A possible explanation is that the AUSM scheme uses splittings for both the
convective interface velocity and the pressure flux along with upwinding for the convected
variables. Thus, the u-velocity of the eigenvalues in Section 2, for the AUSM scheme, already
exhibits directional bias according to the local Mach number, which is not the case for the CVS. The
AUSM scheme, like the CVS, also yields results of accuracy comparable to those obtained with the
Roe scheme (Fig. 7).

A Note on the Implementation of Pressure Splittings

As far as the splitting for the pu term is concerned, numerous choices are available based on
the parameter B, as discussed in Section 2.2.2. The splitting suggested by van Leer based on Eq. (33)
and by Hinel et al. [20] based on Eq. (34) have both been implemented for the shock tube problem.
They yield virtually the same results.

The pressure splittings given by Eq. (24) for Formulation 1 and Egs. (24) and (35) for
Formulation 2 of the CVS can be implemented in different ways. One method is to use Eq. (26) for
the p term where the nodal Mach numbers are used, and a similar equation for the pu term; this is the
implementation employed for the results shown in Figs. 2 and 3. This is the original splitting for the
pressure flux employed in the AUSM scheme of Liou & Steffen [7]. The other method is to use the
interface Mach number, e.g., Eq. (27) for the p term. This expression for the pressure flux is similar
to the one employed in the CUSP (Convective Upwind and Split Pressure) scheme of Jameson [25].
The energy profiles obtained using this implementation for pressure splitting in Formulation 1 of the
CVS are shown in Fig. 5. Although these two implementations appear to be very similar, they yield
very different results, as seen from Fig. 2 and Fig. 5. The first implementation appears to be quite
robust whereas the second implementation yields spurious oscillations in the entire solution profile.
These oscillations can be reduced by increasing the amount of numerical dissipation (by increasing
0), but this is accompanied by an overall smearing of the solution profile, as seen in Fig. 5(b).

The two above—mentioned implementations for the splitting of pressure flux have also been
investigated for the AUSM scheme. Fig. 4 shows the results obtained with the first implementation
based on the nodal Mach numbers which, as mentioned earlier, is the original pressure splitting
employed in the AUSM scheme (Liou & Steffen [7]). Fig. 6 shows the results obtained with the
second implementation of the pressure flux which is similar to the CUSP scheme (Jameson [25D. 1t
can be seen that this approach is much more sensitive than the CVS and yields substantial oscillations
when pressure splitting based on the interface Mach number is employed. Combining the various
aspects discussed, including the choice of the dependent variables as well as the estimation of the
variables on the control surfaces, it is clear that the detailed implementation is often as critical as the
overall formulation of both the CVS and the AUSM schemes.
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4.2 Longitudinal Combustion Instability Problem

This test case has been devised by Shyy et al. [12] to investigate the interaction of convection
and a source term in the form of heat release. It involves pressure oscillations in a one—dimensional
model of a combustor which are sustained by the oscillations of heat release. The heat release in the
combustor is specified using a simple model based on some experimental observations. The details
of the heat release model have been presented in Shyy et al. [12]. The interaction of the heat release
source term and the convective and acoustic mechanisms in the system can lead to non—physical high
frequency oscillations in some solution profiles. These numerical oscillations, besides being
fundamentally undesirable from a numerical accuracy point of view, may lead to an instability of the
computation or even trigger nonlinear instabilities in the system. In this regard, this problem is quite
a stringent test case for any numerical scheme which seeks to coordinate convection and acoustic
wave propagation with source term effects such as heat release effects. The value of A = At/Ax is 0.03
and the simulation is carried on for 2 10° time steps. Results are presented in the form of the
following:

(i) pressure and temperature mode shapes plotted at the last ten instants which are 104
time steps apart, shown in Fig. 8, and

(ii) pressure and heat release time series at the location x=0.75 for the last 4 X 104 time steps,
shown in Fig. 9.

The following schemes are used:

(a) CVS with §=0.0 and pressure splitting with Formulation 2

(b) Second—order AUSM scheme

(¢) Second—order Roe scheme
For the CVS, central differencing of the pressure flux along with alower amount of damping (6=0.0)
leads to spurious oscillations in some of the pressure mode shapes (see the results in Shyy ez al. [12]).
These oscillations can be suppressed with a sufficiently high dose of dissipation by increasing the
value of & to 0.8 or higher [12]. This extra dissipation, of course, leads to a smearing of solution
profiles which is manifested in the form of reduced magnitudes of all the mode shapes . This can be
resolved by treating pressure as a source term along with heat release and imparting a special
treatment such as Strang’s operator splitting method (Thakur & Shyy [8,9]). Such a special source
term treatment yields an improved accuracy with no spurious oscillations [12]. However, this is at an
increased computational expense which can be avoided by splitting the pressure flux in an
appropriate manner as discussed earlier in this work.

As seen from Figs. 8 and 9, the results obtained with the CVS along with splitting of the
pressure flux, employing Formulation 2 of the convective and pressure fluxes are quite satisfactory
and comparable in accuracy to those obtained with the second—order Roe scheme. The CVS is able to
coordinate the interaction of pressure oscillations and the heat release in an appropriate manner and
no spurious oscillations are observed. The CVS yields pressure mode shapes with slightly larger
magnitudes compared to those resulting from the second—order AUSM and Roe schemes.

The second—order AUSM scheme also yields results comparable in accuracy to those
obtained with the second—order Roe scheme. However, slight oscillations are observed in mode 3
(Fig. 8) of the pressure mode shapes in the region given by x=0.6 to x=0.8. Overall, the CVS, the
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AUSM and the Roe schemes yield results very comparable in accuracy. However, one can observe
from the mode shapes of the variables (especially pressure) that the results obtained by these three
schemes are not exactly in phase. This is to be expected because there is a difference in the dispersive
and dissipative characteristics among the schemes, which, however small, will result in a slight
difference in the phase characteristics of the solution, especially after 2X 10° time steps.

5. Pressure—Based Solver for Multi-Dimensional Flows

The pressure-based method employed for steady state solutions of the Navier-Stokes
equations in the present study is in the spirit of the well known SIMPLE (Semi-Implicit Method for
Pressure-Linked Equations) algorithm [13]. This algorithm was originally developed for
incompressible flows and has been successfully extended to solve compressible flows by modifying
the pressure correction equation to take the effect of variation of density on pressure into account
[14, 23]. Additionally, the algorithm has been extended to body—fitted curvilinear coordinates in
order to handle arbitrarily-shaped flow boundaries [14].

The present pressure-based algorithm employs a control volume approach and uses a
staggered grid for the velocity components and the scalar variables like pressure, in order to avoid
a checkerboard pressure distribution. The algorithm solves the governing equations in a sequential
manner. The velocity components are computed from the respective momentum equations. The
velocity and the pressure fields are corrected using a pressure correction equation which is derived
by manipulating the continuity and the momentum equations. The correction procedure leads to a
continuity-satisfying velocity field. The whole process is repeated until the desired convergence is
reached.

Both the CVS and AUSMD schemes are implemented in the present pressure-based
algorithm. As pointed out in Section 2.1.3, the convective fluxes of the CVS and AUSMD schemes
are identical for steady state applications except for the computation of the interface convective
velocities.

5.1 Momentum Equations

For a two—dimensional fluid flow problem, the momentum equations in body-fitted
coordinates can be written as follows:

12(09) + &reUn) + S v = 5 (ags — aatn) |+ G[5(- e+ asor) |+

9 (_ 2 9 o (_

[ag( y,,p) + an(yép)] or [a{;‘(x”p) + 617( xEP)] (53)
where x;, x5, ¢ and yy, are the metrics associated with the curvilinear grid. A typical control volume
is shown in Fig. 10. J (the Jacobian of the transformation), q;, g4, and g5 are given by the following

J= XYy — Yy (54a)
g, = x5+ y3 (54b)
gy = XgXp t Ve ¥y (54¢)
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g3 = % + ¥ (54d)

The contravariant components of velocity are given by:
U= uyy, — vx (55a)

V = vx; — uy; - . o (55b)

In the above, ¢ = u or vand u is the physical viscosity of the fluid. Integrating the above over the
control volume and arbitrarily taking 4§ = 4n = 1, we get

[09)r — @3] + [@US). — (U] + [(@$)n — (vh)] =

[yf(qﬁpg B ‘12¢'I)]e - [%(‘11‘155 B ‘12¢n)]w +[£.;-(_ 99 + q3¢")]n - [%(— e * q3¢”)]

+ (= ey +3epn) or (sapy = x1) ©0)
where the superscript O represents the previous time level. For more details, see Shyy [14].

We now formulate the controlled variation scheme (CVS) by formally extending the scheme
from one dimension to the present two—dimensional case. It should be recalled that the convective
fluxes of the CVS and AUSMD schemes are identical for steady state applications except for the
computation of the interface convective velocities. Using the form of the CVS presented in Eq. (52)
independently along the x— and y—directions, Eq. (56) can be expressed, for steady flow, as follows:

Cit /2(¢E - ¢P)n+1 -1 /2(¢P - ¢W)n+] + /2(¢N - ¢P)n+] - ¢y /2(¢P — @5

)n+1

n+1 n+l 57
=D}, e —¢p) - D}_, ,l¢p — bw) 7
n+l n+1l
+ D,’-'H /2(¢N - ¢P) - D;—l /2(¢P - ¢S) +5
where the various coefficients are given by
=1 1
Cix12 =35 Qiz1/2 [i bisipp — Qi:tl/z] [1 + '2"/’(’;'11/2)] (58a)
U H
D. = (— ) = (— ) , elc. (58b)
12 = \TN 1~ T,

and b, _, /2 E1C. are the interface velocities. ¥ is the source term consisting of pressure gradient and

viscous cross—derivative terms as well as the remaining higher—order contributions from the
convective fluxes. Note that the subscript i is used to denote the {—direction and j to denote the

n—direction.
Using the conventional notation for the SIMPLE algorithm [13], Eq. (57) can be written as

Appp = Agpp + Apdpw + APy + Agps + S (59)
where
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Ay = [%ql]i_m _% Qi—1/2 [" bi_12— Qi—l/Z] [1 + ‘%w(’f_l/z)] (60a)
Ap = [%ql]iﬂﬂ _% Qi+1/2 [ bivi2~ Qi+1/2] [1 + %'/’("ill/z): (60b)
As = [%‘13]1._1/2 3 &in [~ b~ Qo) [1 ¥ %’/’(’f—l/z): (609
A= 50 PRE T [ biaie = Qe |1+ (701 (60d)
Ap=Awy + Ap + A5 + Ay (60e)

S=- 21{ Qiv3/2 " w(’i_+3/2) ) {" biyspn t Qi+3/2] ' (¢i+2 - ¢i+1)
+% Qi-3/2" '/’(rits/z) ' [ bi_3;, t Qi—3/2] “(piy — 0i-a)
—?Jl,' Qj+3/2 " '/)(rj13/2) : [_ biyypn t Qj+3/2] : (¢j+2 - ¢j+1) (601)

+ % "Qjap ¢<’j+—3/2) ' { bi—spp ¥+ Qj-3/2] ' (¢j-1 - ¢j—2)

— [(%42¢n)i+1/2 - (%42%7)[_1/2] - [(%%‘Pg)jﬂ/z - (%42¢5)j_1/2] + P

In the above, P*represents terms involving pressure. It can be observed that the above form is
spatially a five—point scheme along both directions which can be conveniently solved using the ADI
method along with a tridiagonal matrix solver. Also, it should be noted that the coefficient matrix
has a dominant diagonal.

For the boundary control volumes, first—order numerical fluxes are employed to obtain the
coefficients Ag, Ay, etc.

5.2 Pressure Correction Equation

The equation of continuity is represented indirectly by the pressure correction equation since
pressure, not density, is the primary variable in the SIMPLE algorithm [13]. The pressure correction

equation consists of mass flux terms (oU)* and (oV)*as well as correction terms on the
pressure—correction control volume interfaces along the £— and #—directions [14]. The superscript
(*) indicates that these mass fluxes do not satisfy the continuity equation during the course of
iteration (hence the need for pressure and velocity correction). The velocity correction terms are
related to pressure corrections. Additionally, for compressible flows, the variation of density must
also be accounted for via density corrections which are also related to pressure corrections through
the equation of state. This changes the nature of the pressure correction equation from a pure
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diffusion equation (for incompressible flows) to a convection—diffusion equation (for compressible
flows). For details the reader is referred to Shyy [14, 23].

Conventionally, the estimation of the mass flux terms is done by utilizing the normal velocity
components located at the faces of the pressure correction control volumes (due to the staggered
grid) and by upwinding the density based on the direction of the interfacial normal velocity [23],
ie.,

=1 ; '
(QU)EBW = 5[[1 + szgn(UiH/z)] o; + [1 - szgn(UiH/z)] 9,-+1} Uivip2

= %{ (0: + €i41) - Uisrp2 ~ lUi+l/2’ o141 Qi)] (63)
where (i+1/2) refers to the east face of the pressure correction control volume. The above
conventional flux estimation is only first—order accurate. The superscript (*) has been dropped in
the above for convenience. It should be noted that the above estimation of the mass flux is identical
to that by the AUSMD scheme (Wada & Liou [18]) except, again, the estimation of the interface
velocity is different.

In the present work, we also investigate a second—order estimation of the mass flux

- 1
(QU),('2+)1/2 - (QU),(~1+)1/2 + Zw(r:-—l/z) ) { bi—1/2 + Qi—l/z] ) (Qi - Qi—l)

+ :1{'/’(’:‘11/2) ' [‘ biysp t Qi+3/2} “feiv2 = 0in1) (64)

where b,_,/, = U,_,, , etc. and the ratios rig / are the same as in Eq. (47).

It should be noted that the remaining terms in the pressure correction equation, i.e., the ones
involving velocity and density corrections, only contribute to the stability, not accuracy, of the
overall algorithm. These terms vanish when overall convergence is achieved since we obtain a
continuity—satisfying velocity field at convergence (for which pressure correction is zero
everywhere, up to machine accuracy).

5.3 Additional Issues Due to the Staggered Grid Layout

An important issue in the CVS and AUSM type schemes is the estimation of interfacial
convective velocities and pressures. Due to the staggered grid arrangement conventionally used in
pressure-based algorithms, additional issues have to be addressed as follows.

5.3.1 CVS

As mentioned earlier, in the CVS, a straightforward two—point averaging is used. Thus, we

have:
| b =b = 1(Uiy + Uisyy) (61a)
i+1/2 = Yi+1/2§ PASEY i+1y
= = 1
bivip = bijripp = §(Vi,j + Vij+1) (61b)

It should be noted that the above interpolations result from the staggered nature of the grids
employed for the velocity components. Due to the staggered location of the scalar variables such
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as pressure and density, these variables are readily available at some of the control volume interfaces
(east and west faces for u—control volumes, and north and south faces for v—control volumes).
Wherever density is required at a point away from the scalar nodes, it is upwinded based on the
direction of the local normal velocity component. The pressure values at the u— and v—velocity nodes
are obtained by the pressure splitting given by Eq. (24). The local Mach numbers required for this
splitting along the £~ and #n—directions are obtained from the local normal velocity and the local
speed of sound:

0.5 (U,-J- + Ui+1,j)/‘11 0.5 (Vi,j + Vij+1)/q3

My, = (62)
,/YPi,j/Qi,i

M§=

‘/ypi,j/gi,j

On a staggered grid, for a u—control volume, for example, along the §— direction, the values
of pressure at the interfaces (i+1/2 and i-1/2) is known from the existing pressure values at the
interfaces (due to the staggered grid, shown in Fig. 10). Pressure itself is computed from the pressure
correction equation in which the mass fluxes are computed by upwinding density based on the
interface convective velocity. Thus, there is no need for splitting pressure in order to get the interface
pressures for either u-control volumes along the £-direction and v—control volumes along the
n—direction. In the remaining direction for each of the control volumes, however, one can employ
the splitting formula to obtain interface pressures.

5.3.2 AUSM

The AUSM type schemes use a splitting formula based on the local Mach number to compute
the interface velocities as well as interface pressures. For a staggered grid layout, such as the one
employed in the present algorithm, the velocity components and scalar variables (pressure and
density) are not located at the same node. This brings up another issue (for the AUSMD scheme),
namely, the estimation of Mach number at the locations corresponding of u, v and p, which are half
a cell length apart from each other. For example, along the §—direction, for the u—control volumes,
p is located on the control volume interfaces and for the p control volumes, u is located on the
interfaces. Thus, we need to estimate local Mach numbers along the the £— and n—directions at the
nodes as well as the interfaces of u, v and p control volumes. This requires, for example, the values
of p and g (to compute the speed of sound for the Mach number computation for u—splitting) at the
u-location and values of u (the local convection speed of for the Mach number computation for
p-splitting) at the p-location. Presently, this is handled via an iterative process as follows.
Considering the §~direction, for example
Step 1: the Mach number at the location of p is estimated initially by Eq. (62).

Step 2: this Mach number is used to split p and these split values of p are used to estimate p at the
locations of u. The density values at the locations of u are obtained by upwinding based on
the local U (normal velocity along the §-direction).

Step 3: Based on these p and g, the Mach number at the location of u is obtained.

Step 4: This Mach number is used to split U and these split values of U are used to estimate an
averaged value of U at the p locations.

Step 5: Steps 1 through 4 are repeated a few times (typically five) until convergence is achieved.
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6. Results of Two—Dimensional Computations

In order to investigate the performance of the CVS and AUSM type schemes for
two—dimensional compressible flows involving shocks, a supersonic flow over a wedge is chosen
as a test case. Both first— and second-order CVS and AUSM schemes (minmod limiter is used for
the second—order fluxes) for the momentum equations as well as the mass flux estimation in the
pressure correction equation are investigated. Results obtained using the Roe scheme (implemented
in a density—based algorithm) are also presented for comparison with the CVS and AUSM schemes.

This problem consists of an oblique shock, generated by a supersonic flow over a wedge,
and its subsequent reflections by a solid flat plate underneath the wedge and the wedge surface itself
and has been investigated by Wang & Widhopf [24] among others. A schematic of the flow is
depicted in Fig. 11. The inlet Mach number is 2.9 and the wedge angle is 10.94°. Two grid systems
are used for the computations, namely, those consisting of 101 x21 and 201 X 41 uniformly
distributed nodes. The location of the leading edge of the wedge is at the discontinuity in the slope
of the top boundary of the grid layout.

The upstream boundary condition specifies the incoming flow at the given Mach number
whereas a zero—order extrapolation is used for the downstream boundary condition (at the exit). The
entire bottom boundary and the wedge part of the top boundary are reflecting surfaces and thus the
normal velocity components there are specified as zero.

The results are presented in Figs. 12-14 in the form of thirty pressure contours with equal
increments between the minimum and maximum pressure values. For all the cases using the CVS,
AUSM and Roe schemes, on both the grids, the correct pressure jump and shock angles are
predicted. However, using the first-order schemes on the 101 X 21 grid the shock is excessively
smeared, as seen in Fig. 12. Even with the refined grid (201 X41 nodes), the first—order flux
estimation does not yield a grid—-independent solution. The accuracy improves when the momentum
fluxes and the mass fluxes in the pressure correction equation are estimated using the second—order
example, a crisp shock structure can be observed (Fig. 13). It can be observed from the results that
both the CVS and AUSM schemes implemented in the pressure-based solver yield accuracy
comparable to the Roe scheme (Fig. 14).

7. Concluding Remarks

The separate treatment of convective and pressure fluxes is a key feature of all
pressure-based algorithms for multi-dimensional fluid flows. Some recently developed schemes
based on separate treatment of convective and pressure fluxes — such as the controlled variation
scheme (CVS) the AUSM type schemes — are thus very naturally amenable for application in these
algorithms. The approach of treating the convective and pressure fluxes in the Euler and
Navier-Stokes equations as two distinct, though coupled, entities, appears to be very promising, as
demonstrated by the results in the present and previous works [7,18]. The upwinding of the
convective flux and the splitting of the pressure fluxes (based on local Mach number) achieve the
proper propagation of signals in the system, yielding high resolution in the solution profiles with no
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spurious oscillations. Such an approach can also be effective in the presence of source terms as
demonstrated by the results of the longitudinal combustion instability problem. Overall, both the
CVS and the AUSM schemes yield accuracy comparable to the Roe scheme.

Both the CVS and the AUSM scheme yield accurate results for two—dimensional
compressible flows, using a pressure-based algorithm. It has been demonstrated that, with these
schemes, the pressure-based algorithms can indeed be very robust and accurate for compressible
flows involving shocks, in addition to their well-established robustness for incompressible flows.
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Fig.1. Schematic of the contributions from split pressures at an interface.
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Fig. 2. Total energy profiles for the shock tube problem using Formulation 1 of the CVS (p term
only in the pressure flux) with two values of J; minmod limiter is used.
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Fig. 3. Total energy ﬁroﬁlcs for the shock tube problem using Formulation 2 of the CVS (p and
pu terms in the pressure flux) with two values of 6; minmod limiter is used.
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Fig.10. Location of variables u, v and p on a staggered grid for the pressure-based algorithm.
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Fig.11. Schematic of the supersonic flow over a wedge.
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(a) First—order CVS for all the equations on the 101 X 21 grid.

(b) First—order AUSM for all the equations on the 101X 21 grid.

(d) First—order AUSM for all the equations on the 201 X 41 grid.

Fig. 12. Pressure contours for a supersonic flow (inlet Mach number = 2.9) over a wedge (angle
10.94°) on the 101 x21 and 201 X 41 grids using first-order CVS and AUSM schemes.
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(a) Second—order CVS for all the equations on the 101 X 21 grid.

(d) Second—order AUSM for all the equations on the 201 X 41 grid.

Fig. 13. Pressure contours for a supersonic flow (inlet Mach number = 2.9) over a wedge (angle
10.94°) on the 101 x21 and 201 X 41 grids using second—order CVS and AUSM schemes.
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(b) Second—order Roe scheme on the 201 X41 grid.

Fig. 14. Pressure contours for a supersonic flow (inlet Mach number = 2.9) over a wedge (angle
10.94°) on the 101 X 21 and 201 X 41 grids using the second-order Roe scheme.
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